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 In this work, Litz wire composed of stranded wires is modeled as anisotropic material with the macroscopic complex 

permeability to analyze skin and proximity effects by the finite element method (FEM). In the proposed method, the permeability 

tensor of the strand is computed at each element considering the wire direction. The computational burden can be greatly reduced 

by the proposed method because it does not require fine spatial discretization unlike conventional FEM. 
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I. INTRODUCTION 

s the driving frequency of electric apparatus increases, the 

eddy current losses due to skin and proximity effects 

become more significant. To reduce these losses, Litz wires 

are widely used in transformers, wireless power transfer 

devices and so on. Because the Litz wire is composed of a 

number of strands, it would take unacceptably long time to 

analyze the eddy currents when using conventional FEM. 

 Using homogenization-based FEM [1-3], the eddy current 

losses in multi-turn coils can effectively be evaluated because 

the coil region is modeled as a uniform material with the 

macroscopic complex permeability for which we do not need 

fine discretization. However, in this method, the coils are 

assumed to be in parallel. We have not been able to apply this 

approach to the analysis of the Litz wires which are composed 

of fine strands. The authors have proposed an approach based 

on the one-dimensional integral equation [4]. In this method, 

the wires are modeled as polygonal lines so that the skin and 

proximity effects in the Litz wire can be analyzed. However, 

the resulting linear equation includes a dense matrix. Thus we 

need special techniques such as the fast multipole expansion 

and H-matrix method to use this method when the Litz wires 

are composed of more than some hundred strands.  

 In this work, we extend the homogenization-based FEM to 

analyze the eddy currents in the Litz wire by introducing the 

tensorial macroscopic complex permeability. It will be shown 

that the proximity loss of the Litz wire calculated by this 

method is in good agreement with that computed by the 

integral equation method. 

II. FORMULATION 

A. Complex permeability 

Let us consider an isolated round wire, radius a, 

conductivity , relative permeability , immersed in a time-

harmonic magnetic field of angular frequency . The 

curvature of the wire is assumed negligible. Then the eddy 

currents due to the proximity effect are obtained by 

analytically solving the Helmholtz equation. The dipole 

magnetic field induced by the proximity effect is anti-parallel 

to the external field outside the wire. This diamagnetic 

property can be represented by the complex permeability [2] 
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where 𝑧 = 𝑎√−𝑗𝜔𝜎𝜇0 and J1 is the first-order Bessel function. 

Note that 𝜇̇ is defined in the plane perpendicular to the wire 

direction. Because there is almost no diamagnetic field along 

the wire direction, the permeability along the wire can be set 

to 𝜇0. 

B. Macroscopic permeability 

Now we consider the multi-turn coils in which the wires 

arranged in parallel. By using the Ollendorff formula [2], we 

can obtain the macroscopic complex permeability given by  
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where is filling rate of the wires. We can model the coil 

region composed of the wires and air with the homogenized 

uniform material with 〈  〉.  

Then we consider the Litz wire which is composed of 

multiple strands. In this case, the complex permeability would 

depend on the position in the coil region due to the wire 

transposition. To model this structure, we assume that the 

wires are locally arranged in parallel, and the macroscopic 

complex permeability can be defined on the plane 

perpendicular to the wires. In the coordinate system L (u, v, w) 

shown in Fig.1, the permeability tensor is given by 
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In the FE analysis, the permeability should be represented in 

the reference coordinate system G (x, y, z) shown in Fig.1. 

Therefore, the permeability L should be transformed to 

A 



permeability G.  Transformation matrix K: L (u, v, w) → G (x, 

y, z) [5] is defined as 
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where Rx, Rz represent the rotational matrix around the x and z 

axes, respectively. In (4), the angles 1, 2 are defined as 
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where Ls is the twist pitch. Using this transformation matrix, 

the tensor permeability G is represented as 
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When analyzing the Litz wire by FEM, the permeability tensor 

(7) is evaluated at the center of each element. 

III. COMPUTATION RESULTS 

We apply the proposed method to the analysis of the 

homogenized model of parallel and multiple strands shown in 

Fig.2. The original model consists of 49 wires whose radius is 

0.15 mm and conductivity is 5.76× 107 S/m, 𝜇 = 𝜇0 and the 

wire pitch is 15 mm. When using proposed method, we model 

it as one homogenized conductor. The filling rate is 0.49, 

and the permeability of the conductor is calculated from (7). 

The current is assumed to be in parallel to the wire axis which 

corresponds to the z-axis in Fig.1, for simplicity. 

 We impose the periodic boundary condition on the faces 

ABCD and EFGH because the magnetic field is not parallel to 

these faces when the wires are twisted. 

 Assuming that the total current is 49 A, the proximity losses 

of parallel and multiple strands are calculated using the 

proposed method and one-dimensional integral equation 

method [4]. The imaginary part of the magnetic flux density, 

which represents the magnetization due to the eddy currents, is 

shown in Fig.3. We can see in Fig.3 that the proposed method 

enables to represent the twisted structure. The frequency 

characteristic of the proximity losses is plotted in Fig.4. We 

can see in Fig.4 that the result of proposed method is in good 

agreement with that obtained by the integral equation method. 

The error between them would be due to the fact that the 

actual external current is no parallel to the wire axis.  
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Fig. 1. Coordinate system of the twisted wires 
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Fig. 2. Analysis model 

 
Fig.3 Magnetic flux density in multiple strands 

 
Fig.4. Frequency characteristic of proximity effect loss 
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